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Abstract

Aeolian vibrations in the frequency range of 10–50Hz are ubiquitous in the conductors of transmission lines. They are

usually not perceptible to the casual observers due to their small amplitudes, nevertheless, they are important as they may

lead to failure of the lines through material fatigue. These problems become more severe for long-span lines. Since the

conductors are fabricated in finite lengths, every once in a while two conductors have to be connected in the field, using

appropriate fittings. A particular case of fitting, considered in this paper, is the compression splice bushing (CSB), which is

sometimes used in long spans to join the ends of two conductors. It is desired to estimate the values of the maximum

bending stress developed in the conductors and in related fittings due to aeolian vibrations. An obvious approach would be

to solve the boundary value problem for the conductors with the CSB; here a model is presented that avoids the solutions

of the complete boundary value problem and results in solving a set of linear algebraic equations.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Aeolian vibrations of the conductors of long span transmission lines have received much attention in Refs. [1–5].
The amplitudes of these vibrations are usually small as compared to the conductor diameters; nevertheless they are
of major concern to the manufacturers of the transmission line conductors because they may lead to structural
failure through material fatigue. It is important therefore to estimate the values of stresses occurring in the
conductor and in related fittings due to aeolian vibrations so that adequate countermeasures can be taken as needed.
This problem is particularly severe for long-span lines. In exceptional cases, e.g. due to topographic conditions, the
span lengths may be as large as 3km and above. Since the conductors are fabricated in finite lengths, every once in a
while conductors’ ends have to be connected in the field, using appropriate fittings (an alternative would be to make
the connections at the ends only, i.e. at the tension towers). One of the several means of joining conductors’ ends in
the field is by means of compression splice bushing (CSB). During aeolian vibrations, bending stresses appear in the
immediate neighborhood of the CSB, as at any fitting attached to the conductor. Also, the CSB itself is subjected to
bending stresses, which may be critical for the reason that large deformations of the CSB and in the neighborhood
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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of the CSB may result in dislocation at the joints. In a long-span line the exact locations of the in-span fittings, in
particular of the CSBs, are not accurately known, due to the relatively high tolerances; other non-constant
parameters are, for example, the tension in the conductor, which depends on the temperature as well as on the mass
per unit length which varies with a possible ice deposit in winter. These uncertainties in the physical model often
result in questioning the viability of the mathematical models developed for computing parameters of such systems;
the other problem being the amount of computational effort required.

The vibration amplitudes in the aeolian vibrations of a conductor are usually computed using the energy balance

principle [6,7]. The bending stresses in the conductor far away from the ends (i.e. ‘in the field’) are a simple function
of these amplitudes. The same applies for the (nominal) bending stresses in the conductors at the end (i.e. at the
suspension clamps) and at all other points of the conductor, e.g. at the points of attachment of fittings (aircraft
warning sphere, etc.). It is at the ends and at the in-span fittings that the highest bending stresses occur. In this
paper, we compute the maximum possible bending stresses occurring in a CSB and in the neighborhood of the
CSB as a function of the frequency and the phase angle, and compare them to the nominal bending stresses at the
suspension clamps. Further, sensitivity analysis of the mathematical model with respect to change in mass density
and tension in the conductors is done and maximum stress distribution along the span in the neighborhood of the
CSB computed. The CSB in the present model is modeled as a short beam under large axial load, its bending
stiffness is larger than that of the conductor, and the conductor is modeled as a taut string with bending stiffness.
In order to compute bending stresses/strains in the CSB or in the conductor, the obvious approach would be to
solve the boundary value problem for the conductor with the CSB followed by use of the energy balance principle.
Here, a model is used which avoids the solutions of the complete boundary value problem [8] but considers only
the CSB in an infinite span with a standing wave in the conductors far from the CSB. This is a realistic assumption
since the tolerance in the placement of the CSB is normally high, so that its exact location in the field is not well
known. The new approach results in a set of linear algebraic equations which can be solved easily.
2. Model description and solution approach

The schematic diagram in Fig. 1 represents two long-span conductors joined together by a CSB. The
bushing is assumed to be tightly fitted to the conductors so that no slipping motion occurs, i.e. the friction
force between the bushing and the conductor is greater than the normal forces developed at the interface due
to bending of the conductor. As a first approximation here the conductor is assumed to be a solid of circular
cross-section, and the bushing is a cylindrical tube of length b(5L) (length of the conductor) with inner and
outer radii R and RB, respectively. R is also the radius of the conductor. For the purpose of calculation of
stresses due to bending in the middle of the bushing, the three segments of the transmission line are marked 1,
2, 3 as shown in Fig. 1. Segments 1 and 3 are formed by the conductors only; 2 consists of the conductor with
the bushing. Coordinates are as shown in Fig. 1. Material of the bushing is steel and that of the conductor is
aluminum. Numerical data used in the computations are provided in Appendix. In the alternate solution
approach, conductors with the CSB is modeled as an infinitely long string/beam as shown in Fig. 2 with
standing sinusoidal waves at infinity ends.
2.1. Equation of motion and boundary conditions

For high-voltage overhead lines the conductors today typically consist of stranded metallic wires. The core
normally is formed by steel wires (for structural reasons), while the outer layers are typically made of
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Fig. 1. A schematic of two conductors clamped at one ends and joined together at the other ends by a compression splice bushing.
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Fig. 2. A schematic of the two long conductors joined together by a compression splice bushing.
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aluminum alloys (good conductivity!). This complex structure is however normally modeled as a taut string
with mass per unit length m ¼ rA, tensile force T and a (small) bending stiffness EI. r is the average density of
the conductor material and A is the area of the cross-section. The conductor diameters d typically are of the
order of a few centimeters and the wave lengths of the aeolian vibrations of a few meters. The maximum
displacement amplitudes of the aeolian vibrations are normally well below one conductor diameter. These
data justify modeling the conductor vibrations by means of the partial differential equation [9]:

EIwxxxxðx; tÞ þ mwttðx; tÞ � Twxxðx; tÞ ¼ q x; t;w;wtð Þ (1)

corresponding to a taut string with bending stiffness, where w(x, t) is the transverse deflection of the conductor
at location x and at time t, and q(x, t, w, wt) represents external load as well as damping due to the hysteresis in
the conductor and also due to the damping devices, if present. Variables with subscripts x and t indicate
derivatives with respect to space and time, respectively.

A solution of the partial differential Eq. (1) for the free vibration of the conductor (q(x, t, w, wt) ¼ 0) can be
obtained by using the method of separation of variables (w(x, t) ¼W(x)sinot) which results in the equation in
space domain as

EIW xxxxðxÞ � TW xxðxÞ � rAo2W ðxÞ ¼ 0, (2)

where o is the circular eigenfrequency of the conductor vibration.
Solution of Eq. (2), the transverse deflection W(x) is

W ðxÞ ¼ Aeax þ Be�ax þ C sin bxþD cos bx (3)

or

W ðxÞ ¼ Aeax þ Be�ax þ E sinðbxþ fÞ, (4)

where a and b are given by

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 4EIrAo2

p
2EI

s
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 4EI rAo2

p
2EI

s
. (5)

Constants in Eq. (4) are to be determined from the physical boundary conditions. In the alternate solution
approach, as explained earlier, two long conductors joined together by a CSB (Fig. 1) are considered to be
equivalent to two infinitely long conductors connected by a CSB at one ends as shown in Fig. 2. Standing
sinusoidal waves are assumed to be present far away from the CSB. This translates into the boundary conditions:

W ðxÞ ¼ S sin
px

l
� f

� �
þ ŵðxÞ; limx!�1 ŵðxÞ ¼ 0, (6)

where S is the amplitude of the standing harmonic wave, l the wavelength, f the phase angle, and ŵðxÞ

consists of exponential terms in Eq. (4). In the problem to be solved here, we assume that bending stiffness of
the conductor is not small but comparable to that of the bushing, so that, Eq. (1) holds true for all the three
segments of the transmission line shown in Fig. 1. Tension is assumed to be constant throughout. The bending
stiffness of the segment 2 is simple sum of the corresponding stiffnesses of the conductor and the bushing
((EI)2 ¼ (EI)1+(EI)BUSHING). The other boundary conditions are compatibility conditions, satisfying
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continuity of displacement, slope, bending moment, and shear force at the bushing ends as follows:
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(7)

2.2. Stress computation

Using separation of variables, the boundary conditions (Eq. (7)) can be written as functions of the space
variable x. From Eq. (5), it can be seen that a and b depend upon the local system parameters; hence, they are
different for different sections of the conductor line in Fig. 1. Therefore, for the three segments of the
conductor line depicted in Fig. 2, the transverse deflections are given by

W 1ðxÞ ¼ A1e
a1x þ B1e

�a1x þ E1 sin b1xþ f1

� �
for �1oxp�

b

2
,

W 2ðxÞ ¼ A2e
a2x þ B2e

�a2x þ E2 sin b2xþ f2

� �
for �

b

2
pxpþ

b

2
,

W 3ðxÞ ¼ A3e
a3x þ B3e

�a3x þ E3 sin b3xþ f3

� �
for þ

b

2
pxoþ1, ð8Þ

where ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 4ðEIÞiðrAÞio2

q� �
=2ðEIÞi

s
and bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 4ðEIÞiðrAÞio2

q� �
=2ðEIÞi

s
, i ¼ 1, 2,

3. These deflections are required to satisfy the boundary conditions in Eqs. (6) and (7), which results in 8 linear
non-homogeneous equations in 12 constants, Ai, Bi, Ei, fi (i ¼ 1, 2, 3). B1 and A3 are zero due to the boundary
conditions in Eq. (6). Among the remaining 10 constants, the amplitude E1 (to be used as non-dimensionalizing
variable), the circular frequency o and the phase angle f1 of the standing wave at x-�N are arbitrarily chosen.
The other 8 constants can be now determined uniquely from the 8 non-homogeneous linear algebraic equations as
a function of the frequency o and of E1 and f1. This amounts to solving a matrix inversion problem

G½ �eA ¼ eB, (9)

where eA is the vector of constants to be determined and the constant vector eB on the right-hand side results
from the boundary conditions. G, eA, and eB are given in Appendix. With the known constants, the maximum
bending stress s(0) at x ¼ 0, i.e. in the middle of the bushing, can be calculated from the bending moment
amplitude at this point, which is given by

Mð0Þ ¼ �ðEIÞ2W 2xxð0Þ. (10)

The stress amplitude at x ¼ 0 is

sB ¼ sð0Þ ¼
Mð0Þ

IEQ
RB, (11)

where RB is the outer radius of the bushing and IEQ is the equivalent moment of inertia of the segment 2. IEQ is
given by [10]

IEQ ¼
pah3

4
þ

p R4
B � R4

� �
4

, (12)

where a ¼ (EBUSHING/ECONDUCTOR)h and h ¼ R. The stress amplitude s(0) is a function of the circular
frequency o and of the phase angle f1 and is also linear function of the amplitude of the standing wave E1 at
the left infinity end. The dependence on E1 can however be eliminated by normalizing s(0) with a reference
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stress, e.g. with the stress amplitude occurring at the rigid clamp end of a conductor oscillating in the form of a
harmonic standing wave with amplitude E1 far away from the suspension clamp, according to Fig. 3. The
transverse deflection of the conductor is

W ðxÞ ¼ Ceax þDe�ax þ E1 sinðbxþ fÞ. (13)

where C ¼ 0 due to the sinusoidal standing wave boundary condition at the right infinity end, and the
boundary conditions at the clamped end, W(0) ¼ 0 and Wx(0) ¼ 0 result in

tan f ¼ �
bðoÞ
aðoÞ

. (14)

The maximum bending stress at the clamped end is therefore given by

sC ¼ E1b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
ðEIÞ1

R

I1
(15)

as a function of E1 and o. Here (EI)1 is the bending stiffness of the conductor, and I1 is its moment of inertia
and R its radius.

Since both sB and sC depend linearly on E1, the normalized stress at the CSB, namely sB/sC, no longer depends
on E1 but only on the phase angle f1 and the circular frequency o ¼ 2pf. Fig. 4 shows sB/sC as a function of f1

(in the range �p to p radians) and f (in the range 10–50Hz). Non-dimesionalized stress plot indicates the relative
magnitudes of the stresses occurring in the bushing as compared to that occurring at the clamped ends. In Fig. 5,
the maximum values of sB/sC over the phase angle f1 is shown as a function of f, which suggests that maximum
stress occurring in the bushing is approximately 25% of that occurring at the clamped ends. This maximization
makes sense, because the phase angle f1 can in this simple model assume any value. The non-dimensional
bending stresses in the bushing therefore represent the worst possible case of the stresses in the CSB (whose exact
location in the conductors is not really known due to the existing tolerances). Fig. 6 plots the span wise
distribution of the maximum bending stresses on and in the neighborhood of the CSB. It can be seen from Fig. 6
that maximum bending stress occurs in the neighborhood of the CSB at a distance of the CSB length (x ¼ �b),
while in the CSB itself maximum bending stress occurs at x ¼ 0. The maximum bending stress occurring in the
w 

x 

+ ∞

Fig. 3. A schematic of an infinitely long conductor clamped at one end.

Fig. 4. Plot of maximum bending stress occurring in the CSB as a function of the frequency and the phase angle normalized with the

maximum bending stress developed at the clamped end (for tension T ¼ const., mass density of the junction m2 ¼ const.).
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conductor (at x ¼ �b) is about 60% of that occurring at the clamp ends; this suggests that maximum likelihood
of failure of the conductor is at the clamp ends. However, due to large deformation in the neighborhood of the
CSB, the joint with CSB may itself undergo unwanted deformations.

Furthermore, a sensitivity analysis of the proposed model is done with respect to the uncertainties present in the
physical system, for example, the tension in the conductor, and the change in the mass of the junction due to possible
deposition of ice in winter. Results have been produced for710% variations in the tension and up to 15% change in
the mass density m2 ¼ (rA)2 of the junction. Results plotted in Figs. 7 and 8 clearly suggest that there is no significant
variation in the non-dimensional values of the maximum stress in the frequency range 10–50Hz over the phase angle
�p to p radians with the uncertainties due to variations in tension in the CSB and the mass of the junction. Variation
in maximum bending stress occurring in the center of the CSB with respect to change in length of the CSB (con-
sidered here as uncertainties in the model) is shown in Fig. 9 as function of frequency. The change is again not large
here, though, for larger lengths of the CSB appreciable variations in the maximum bending stress have been noticed.
Fig. 5. Plot of maximum bending stress occurring in the CSB as a function of frequency normalized with the maximum bending stress

developed at the clamped end (for tension T ¼ const., mass density of the junction m2 ¼ const.).

Fig. 6. Plot of maximum bending stress occurring in the line at different locations from the center of the bushing as a function of

frequency normalized with the maximum bending stress developed at the clamped end (for tension T ¼ const., mass density of the junction

m2 ¼ const.) (- - -: x ¼ 0, ~: x ¼ �b/4, v : x ¼ �b/2, c: x ¼ �b, ’: x ¼ �2b, �: x ¼ �3b, : x ¼ �4b, &: x ¼ b/4, +: x ¼ b/2, m: x ¼ b,

K: x ¼ 2b, x ¼ 3b, � : x ¼ 4b).
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3. Concluding remarks

Stresses and strains occurring in vortex excited oscillations of the conductors of long span overhead
transmission lines with in-span fittings can be estimated using the energy balance principle in its modified form
as described in Ref. [9]. In this approach, first the eigenvalue problem for the system is solved. The spectrum
being very dense, it is then assumed that the forced vibrations always occur in resonance and that the vibration
shape is one of the corresponding eigenmodes. Only a scaling of the amplitude is therefore necessary to
determine the vibration amplitudes for any given (eigen) frequency and this is done using the energy balance

principle, where the average wind-power input is set equal to the power dissipated due to damping in the
conductor itself and also in the damping devices, if present. With these known vibration amplitudes, the
bending strains and stresses, both in the conductor and also in the fittings themselves can be computed. In
particular, the stresses in a CSB could be calculated in this manner.
Fig. 7. Plot of maximum bending stress occurring in the CSB as a function of frequency normalized with the maximum bending stress

developed at the clamped end (for varying tension T, mass density of the junction m2 ¼ const.) (—: T, ’: 0.9 T, E: 0.95T, �: 1.05T, K:

1.1T).

Fig. 8. Plot of maximum bending stress occurring in the CSB as a function of frequency normalized with the maximum bending stress

developed at the clamped end (for tension T ¼ const., mass density of the junction m2 varying) (—: m2, ’: 0.9m2, �: 1.05m2, ~: 1.1m2, K:

1.15m2).
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Fig. 9. Plot of maximum bending stress occurring in the CSB as a function of frequency normalized with the maximum bending stress

developed at the clamped end (for tension T ¼ const., mass density of the junction m2 ¼ const.) (for varying CSB length, ’: b ¼ 0.36m,

~: b ¼ 0.4m, —: b ¼ 0.44m, �: b ¼ 0.48m, K: b ¼ 0.52m).
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The eigenvalues are however quite sensitive to the parameters of the system such as the tension in the conductor
which is a function of the temperature, the location of the CSB in the conductor which is only specified within a
relatively large tolerance, etc. In the alternative approach presented in this paper, the solution of the eigenvalue
problem is avoided and for a long conductor the maximum possible bending stress is estimated by considering
standing waves of a given amplitude and an arbitrary phase with respect to the spatial variable. The bending
stress in the compression bushing for each vibration amplitude is maximized with respect to the phase and is
normalized with respect to the bending stress in the conductor at the clamp end. Since both bending stresses are
linear in the amplitude, the stress in the bushing normalized in this manner no longer depends on the amplitude.
On the other hand, permissible values for the nominal bending stresses in the conductor at the ends in very long
conductors are routinely estimated via energy balance. They are also measured in the field indirectly by obtaining
the ‘bending amplitude’ via ‘vibration recorder’ [2]. A similar procedure can be used to estimate the relative values
of the bending stresses at other fittings in long span conductors.
Appendix

Conductor data:
ECONDUCTOR (aluminum) ¼ 70� 109Nm�2,
(EI)1 ¼ (EI)3 ¼ 584.3Nm2,
T ¼ 12630N,
rAl ¼ 70� 109 kgm�3,
R ¼ 0.0102m.

Bushing data:
EBUSHING (steel) ¼ 200� 109Nm�2,
(EI)2 ¼ 1.22� 104Nm2,
T ¼ 12630N,
rsteel ¼ 7860 kgm�3,
ROUT ¼ RB ¼ 0.0173m,
RIN ¼ R ¼ 0.0102m,
b ¼ 0.44m.
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The vectors eA, and eB and the matrix G in Eq. (9) are

eA ¼ A1;A2;B2;E2 cos f2;E2 sin f2;B3;E3 cos f3;E3 sin f3
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